MODELING SOIL WATER DYNAMICS UNDER RAINFED AGRICULTURE TO MITIGATE CLIMATE CHANGE

By

Mukhtar Ahmed Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan

www.uaar.edu.pk

International Conference on Managing Soils for Food Security and Climate Change Adaptation and Mitigation

Sequence

- Climatic Variability (Climate Change)
- Soil water dynamics
- Simulation Modelling
- Methodology
 - NEUTRON PROBE
 - APSIM
- Results and Discussion
- Conclusion

Atoms for Peace

IAEA-CN-191-130

IN ASSOCIATION WITH

Minate Variation

Atoms for Peace

IAEA-CN-191-130

Climate - one of the known Risk Factors (Introduction)

Climate, the long-term effect of the sun's radiation on the rotating earth's varied surface and atmosphere. It can be understood most easily in terms of annual or seasonal averages of temperature and precipitation....

From a risk management perspective we **need** to understand existing <u>climate variability</u>

Enormous year-to-year climate variability

IAEA-CN-191-130

Enormous year-to-year climate variability (October-April Rainfall)

IAEA-CN-191-130

IAEA-CN-191-130

Enormous year-to-year climate variability

IAEA-CN-191-130

A major source of agricultural production variability

Enormous year-to-year Climate Variability

IAEA-CN-191-130

A major source of agricultural production variability

ΙΑΕΑ

Enormous year-to-year Climate Variability

IAEA-CN-191-130

A major source of agricultural production variability

2008-09 2009-10 Normal

Wheat Scenario in Pakistan IAEA-CN-191-130

	Average (tons/hectare)	
Scenarios	Wheat	
Productivity Potential at Research Stations	6.5	
Productivity at Progressive farmers	5.5	
National Average Productivity	2.6	
% Gap between progressive farmer and National average	52.5	

% Gap between potential & National average

59.8

Climate Variability

IAEA-CN-191-130

- 2010 Flood was driven by unprecedented monsoon rain
- Intense monsoon rains attributed to La Niña (NASA)

Effects of Climate Events on Wheat Production in Rainfed Area

Cropping Year	Climate Events	Yield (kg/ha)	% change
1999-00	Drought (Weak La- Nina)	1319	-25
2000-01	Drought + Terminal heat stress (Non El-Nino Drought)	534	-70 IAEA-CN- 191-130
2001-02	Drought +Terminal heat stress (Non El-Nino Drought)	717	-59
2002-03	Drought (Moderate El-Nino)	1310	-25
2003-04	Terminal heat stress (Non El-Nino Drought)	1321	-25
2004-05	(Week El-Nino)	1730	-1
2005-06	Terminal heat stress (Non El-Nino Drought)	1354	-23
2006-07	Bumper Crop Year (Moderate El-Nino)	1755	=
2007-08	Frost + Terminal heat stress (Moderate La-Nina)	1205	-31
2008-09	Non El-Nino year	1465	017
2009-10	Drought (Moderate El-Nino)	945	-46
2010-11	Strong Lanina	1760	+1
2011-12	Terminal heat stress (Moderate El-Nina)	1200	-31

IAEA-CN-191-130 Effective Climate Risk Management requires

An understanding of management options in response to climate information,

IAEA-CN-191-130 Understanding Climate Variability

- **SOI** (Southern Oscillation Index)
- El Nino-Southern Oscillation (ENSO)
- IOD (Indian Ocean dipole)

SOI

IAEA-CN-191-130

IAEA-CN-191-130

SOI use for Pakistan

Probability of exceeding Median Rainfall for November / January based on consistently positive phase during September / October

IAEA-CN-191-130

ENSO

- Ocean Atmosphere Interaction
- Largest known source of climate variability
- Global changes to rainfall, winds, pressure and temperature

Understanding Climate Variability

Global impact (indicated as wetter or dryer weather conditions) of a 'warm' (a) El Nino and a 'cold' (b) La Nina) ENSO event (Clewett *et al.* 2002).

Understanding Climate Variability

Locations of average sea surface temperature locations for Niño 1, 2, 3, 3.4 and 4 (source: Bureau of Meteorology, Australia)

IAEA-CN-191-130

IOD

Locations of average sea surface temperature for IOD, (source: Bureau of Meteorology, Australia)

Long Term Climate Projections

2090-2099

2020-2029

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 (°C)

http://data.giss.nasa.gov/gistemp/graphs/

IAEA-CN-191-130

Soil Water Dynamics

- Water dynamics in the atmosphere-soil-plant (ASP) system
- Water the Scarce resource under changing climate
- Richards's equation
- Climate vulnerability threatens Pakistan's food production systems
- Rainfed areas under serious threat

IAEA-CN-191-130 Soil Water Dynamics under Climate Variability

- 1. Experimental approach
- 2. Simulation Approach

Simulation models emerged as a valuable tool for enhancing our understanding of soil water dynamics

- Integration of the existing knowledge
- Used to explore the options and constraints
- Computer software with mathematical representations of major biological processes
 - Empirical model
 - Mechanistic model

Computer simulation models are becoming a^{1AEA-CN-191-130} common tool in Agricultural Research and Teaching Their uses has also extended to:

- Agricultural planning
- Policy making
- Technology Transfer
- On-farm management
- Scenario Making
- Rainfall forecasting
- Soil water dynamics

Modeling Types

IAEA-CN-191-130

Dynamic Modeling

IAEA-CN-191-130

Characteristics of models with different Level of Complexity IAEA-CN-191-130

	Regression Model	Simple Crop Growth Model	Mechanistic Crop Growth Model
Category	Empirical	Crop Growth	Crop Process
Туре	Statistical Static		Mechanistic, Dynamic
Relationships:	Empirical		Mechanistic
Scale:	Regional	Field	$m^2 \longrightarrow Leaf$
Time Step:	Seasonal	Daily	Hourly
Use:	Operational	Operational/ Research	Research
Character	Requires Data From	(Yield, Water	Broad Scope (Yield, ET, Soil
	Year Many years to	Use, Growth	Evap., Canopy Profiles, Soil
	Drive patameters to	Stage, Leaf	and Canopy Fluxes, Stamatal
	estimate Yield	Area, etc.)	Behavior, etc.)
		2	STAN ARID AGRICOLITIS

Dynamic Models in Research

Models		AEA-CN-101-120
APSIM	McCown et al.,1996	AEA-CII-191-150
GOSSYM	Whisler et al., 1986	
Crop Water Budget Model	Ritchie, J.T., 1972	
LINTUL	Spitters and Schapendonk, 1990	
CropSyst	Stöckle et al., 2003	
CERES	Ritchie and Otter, 1985	
SPACSYS	Wu et al., 1998, 2007	
sirius	Fletcher et al., 2009	
CERES-Maize	Jones 1986	
SVAT	Mo et al. (2005)	
WOFOST	Supit et al., 2012	
SPAc	Sus et al., 2010	
DGVM	Yang et al.,2004	
SPA	Williams et al., 1996	
JULES	Hoof et al., 2011	
EPIC	Williams et al.,1984	
CROPSYST,	Stockle et al., 2003	
STICS	Brisson et al., 1998,	
DSSAT	Jones et al., 2003	
MODERATO	Bergez et al., 2001	
DECIBLE	Chatelin et al., 2005	
SEPATOU	Cros et al., 2004	
RICEPEST	Willocquet et al., 2000, 2002	
WOFOST	Boogard et al., 1998	
AFRCWHEAT2	Bussel et al 2010	
SWAP	Vazifedoust et al., 2007	
SVAT	Mo et al., 2005	
GEPIC	Liu et al.,2007	
InfoCrop	Aggarwal et al., 2006	
WaterGAP	Alcamo et al., 2003	

Agricultural Production Systems Simulator (APSIM)

Simulates:

Mechanistic growth of crops, pastures, trees, weeds ... Dynamics of populations key soil processes (water, solutes, N, P, carbon, pH) Surface residue dynamics & erosion Dryland or irrigated systems Range of management options Crop rotations + fallowing + mixtures Intercropping Short or long term effects

Agricultural Production Systems Simulator (APSIM)

ΙΑΕΑ

APSIM

IAEA-CN-191-130

WORKING DYNAMICS OF SOIL WATER AS DESCRIBED BY APSRU

Measurement of Soil water IAEA-CN-191-130

- Gravimetric Method
- Radiations Method
 - Neutron Probes
 - Gamma Probes
- Calibration of Neutron Probe
- Principle of Neutron Probe
 - Fast neutron → Moist soil → Source become surrounded by a cloud of slow neutron → Density of slow neutron is proportional to the concentration the moisture.
 - If soil is dry \longrightarrow Less hydrogen \longrightarrow Slow neutron density is low
- Method is fast, reliable and less expensive after initial investment
- Neutron Probe Calibration equation was developed by systematically filling drums with different uniform soil water contents, weighing the drums and measuring the volumetric soil water contents

Soil Moisture by Neutron Probe (CPN-503)

Parameterization and Evaluation of APSIM Model (Total Soil Water)

ΙΑΕΑ

APSIM Model Utilization (Islamabad)

ΙΑΕΑ

APSIM Model Utilization (Chakwal)

APSIM Model Utilization (Talagang)

Decade wise simulation of Soil Water Dynamics by APSIM

	Infiltration	Drainage	Evapotranspiration	
Years	(mm)	(mm)	(mm)	Runoff (mm)
2011-20	85.16	11.74	51.66	22.43
21-2030	47.04	8.79	55.11	0.05
31-2040	69.38	10.68	49.01	7.01
41-2050	62.59	8.19	53.68	25.9
51-2060	26.69	9.46	50.27	0.3
61-2070	85.04	14.91	50.57	7.55
71-2080	74.42	15	48.58	5.67
81-2090	21.6	8.93	53.6	0.4
91-2100	68.12	17.26	51.1	5.47
	EC		EA State A	1994 XULLENDI X

Long term simulation of Soil Water Dynamics by APSIM

Atoms for Peace

Conclusion

- Application of modern techniques like neutron probe at the different climatic zones will be helpful to design a soil water dynamic model and to parameterized different dynamic model like APSIM which could reduce climate-related risks and to manage the cropping systems more efficiently.
- ➢ It can be concluded that climate variability information may be utilized to improve the resilience of wheat crop yield in rainfed area while considering mitigation, adoption and technology transfer as an integrated approach.
- Use of crop simulation modelling an effective and sustained implementation of a road map to understand agricultural environment and climate change.
- Use crop simulation model as a tool to understand soil water dynamics, climate and crop management simultaneously to explore the potential yield.
 - The ability to predict rainfall fluctuations in advance, suggests that there exists considerable potential to reduce agricultural environment vulnerability to climate variability through improved agricultural decision-making.

- Need to pay attention to a forecast of ENSO /IOD for the coming season as one part of risk management strategy.
- Simulation models and a better working knowledge of climate drivers are part of the toolkit for agronomists as they work with farmers to manage risk in a variable and non-stationary climate.
- > APSIM as a daily time-step model can be used at many points as a risk management tool.
- Probabilistic climatic forecasting system and dynamic simulation modelling can aid decision making about crop choice, cropping sequence and management options.

Thanks